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Abstract: The discrete element method is a powerful numerical tool in simulating the behavior of granular materials. It bridges the gap
between continuum mechanics and physical modeling investigations. In spite of the significant achievements to date, some major
problems are yet to be solved including the development of realistic large-scale models with initial conditions similar to those encountered
in real problems. This paper introduces a computational method to generate a large-scale packing with predefined porosity and grain-size
distribution in three-dimensional space based on a small initial sample packing. The developed method is implemented into an open-
source computer code and used to generate specimens with known properties. The results showed that, under static condition, specimens
generated using the proposed algorithm exhibited realistic behavior suitable for geotechnical applications. In addition, the controlled
structure of the initial sample packing is successfully transferred to the final packing.
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Introduction

Since the discrete element method was first introduced �Cundall
and Strack 1979�, it has been used extensively to investigate vari-
ous engineering problems. One of the most important steps in a
discrete element simulation is to generate a specimen �particle
packing� in a form that represents realistic conditions. Several
methods are currently available to randomly generate particle
packing. These methods can be divided into three main catego-
ries: geometric; sedimentation; and dynamic methods. A brief
overview of these methods is given below.

Geometric Methods

In these methods, a specimen is generated based on purely geo-
metric calculations without simulating the dynamics of particle
motion. Stoyan �1998� summarized different algorithms used to
generate spheres simultaneously starting from a set of randomly
located points. Evans �1993� developed the simple sequential in-
hibition model to place spheres sequentially and randomly in a
given region. Cui and O’Sullivan �2003� suggested two-
dimensional �2D� and three-dimensional �3D� assemblies of cir-
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cular and spherical grains based on the triangulation approach.
Although the 2D assemblies were successfully generated, the 3D
packing encountered several performance problems. An improved
method to generate a dense random packing in two dimensions
was proposed by Feng et al. �2003� based on the advancing front
approach. These methods, however, are generally applicable to
2D problems; the extension to 3D still needs further investiga-
tions.

Sedimentation Methods

Based on this approach, the translation of disks/spheres is deter-
mined based on purely geometric calculations, without analyzing
the physical dynamics of the problems. Tory et al. �1968� devel-
oped the so-called sedimentation techniques. In this method, the
required domain is filled up by placing disks/spheres following a
user-defined size distribution into the domain and translating it
downward until it collides with already existing disks/spheres in
the system. Similar approaches have been employed by other re-
searchers �Han et al. 2005; Fu and Dekelbab 2003�.

Dynamic Methods

The advantage of the above methods is their computational effi-
ciency. Packing process, however, involves various forces in ad-
dition to gravity �i.e., contact forces due to collision and friction
among particles and interelement forces such as the van der Waals
or electrostatic forces�. These forces can affect the packing struc-
ture either individually or simultaneously depending on the pack-
ing condition. These phenomena are not considered in the purely
geometric packing algorithms. A typical dynamic involves plac-
ing the required number of particles into a large domain whose
walls are slowly moving inward until the required density is

reached. Another possibility is to simulate gravitational deposi-
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tion where particles fall down freely into the domain, and their
equilibrium position is established under the effect of gravity
�Kong and Lannutti 2000�. Liu et al. �1999� proposed a method to
generate packing by imposing an assumed centripetal force on
particles that are randomly generated in a spherical space. The
above methods are considered to satisfactorily simulate the dy-
namics of forming a packing and produce realistic structural in-
formation, e.g., the radial distribution function �Jullien et al.
1996� and mean coordination number �Liu et al. 1999�. However,
they required a huge amount of calculation and therefore consid-
ered to be expensive and time consuming. In addition, the above
methods do not address the generation of a packing with pre-
defined porosity which is one of the important properties needed
for geotechnical applications.

Input parameters for discrete element analysis are often de-
rived by fitting data with the results from standard simulations
using small assemblies of particles. Ng �2006� suggested that,
under static conditions, such parameters �e.g., shear modulus,
density, and damping� have negligible effects on the macroscopic
behavior of the packing. The packing structure, on the other hand,
is considered to be an important factor affecting the macroscopic
behavior. The specimen used to simulate a given problem should,
therefore, have the same structure as the sample used in the fitting
process.

In this study, an algorithm combining the dynamic and geo-
metric methods is proposed. Compared to the above methods, the
proposed algorithm has the following advantages:
• The generated 3D packing has a realistic structure with a pre-

defined grain-size distribution and porosity.
• Simulation time is reduced significantly by introducing a new

geometric “flip” technique to generate a large-scale packing
using an initial sample packing. The proposed flip technique
can be applied to any particle shape.
Triaxial tests have also been conducted to demonstrate the

structure conservation between the sample and the final packing.
The developed algorithm was implemented into the Open Source
computer code YADE �Kozicki and Donze 2008� using C��
programing. Although at the time of preparing this paper only
spherical particles are available in the code, the algorithm can be
applied to other particle shapes.

Governing Equations and Force Description

The contact forces are calculated based on the penalty method
using the volume overlap of two interacting spheres.

Normal Forces

The normal forces are calculated as follows:

fnci = kn�n �1�

where fnci=normal force at contact c of particle i; kn=normal
stiffness at the contact; �n=relative normal displacement between
two particles; and n=branch vector from the contact point to the
particle center.

Shear Forces

The shear forces are calculated incrementally using �Hart et al.

1988�
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�fsci = ks�ut �2�

where �fsci=incremental shear force; ks=tangential stiffness; and
�ut=incremental tangential displacement. The shear force is trun-
cated if its absolute value is larger than the maximum value given
by Mohr-Coulomb criterion

fsci
max = �fnci� � tan �i �3�

where �i=internal friction coefficient.
The best fit method �Liao et al. 1997; Hentz et al. 2004� is

employed in this study to establish the relationship between
Young’s modulus E, Poisson’s ratio �, and the dimensionless
value of ks /kn

E =
Dinit

a,b

Sinit
kn

� + �� + �
ks

kn

� + �
ks

kn

�4�

v = �1 −
ks

kn
�/�� +

ks

kn
� �5�

where Dinit
a,b =initial distance between the two interacting elements

a and b; coefficients �, �, and �=fitted values; and Sinit

= “interaction surface” given by

Sinit = 	�min�Ra,Rb��2 �6�

Stability Condition

The specimen is considered to be stable if the ratio of the unbal-
anced force to the total force is less than or equal to a predefined
value. In this study, a value of 0.01% is used as indicated by Eq.
�7� below

Sc =
��f i�

��fnci�

 0.01% �7�

where f i=resultant force on the body and fnci=contact force.

Packing Generation Algorithm

The developed packing procedure consists of two phases: �1� a
relatively small size initial packing is first generated with a pre-
defined grain-size distribution and a desired porosity; �2� a final
packing is then generated by assembling the small samples ac-
cording to the geometric flip technique to maintain the same
grain-size distribution and porosity. The above phases are dis-
cussed below.

Phase 1: Initial Packing

To generate an initial packing in a given space of known dimen-
sions �bx, by, and bz� a number of particles are first generated
without overlap in the predefined space. The particles are initially
allowed to settle under gravity into a box with dimensions of bx

�bz in plan. The height of the box is chosen to keep the re-
bounded particles inside �Fig. 1�a��. Additional particles are gen-
erated after a predefined time interval �particle generation
interval�. Particle generation process is terminated when the total

volume of the generated particles equals the total solid volume
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�Vs�. The analysis continued until the packing reached the stabil-
ity condition. The above procedure is called phase 0 in this study.
The solid volume is calculated as

Vs = p � bx � by � bz �8�

where Vs=volume of the particles; p=target porosity; and bx, by,
and bz=packing dimensions in the x, y, and z directions, respec-
tively.

Generating Spheres with a Predefined Grain-Size
Distribution

In digital elevation model �DEM� simulation, it is rather conve-
nient to generate a packing that corresponds to a given grain-size
distribution by controlling the particle number than the particle
weight. Thus the results of the sieve analysis that is usually ex-
presses as a percentage passing by weight through a series of
sieves should be converted to a percentage passing by number of
spheres. A generator is used to produce a pseudorandom number
between 0 and 1. For spherical particles, the radius of particle i is
calculated using the following equation to generate a population
of particles consistent with the sieve analysis result:

ri = �D1 + �RANi � 100 − P1� � �D2 − D1�/�P2 − P1��/2 �9�

where ri=radius of particle i and P1 and P2= total number of
grains �%� calculated from the percentage volume passing
through sieves S1 and S2, respectively. D1 and D2=diameters of
sieves S1 and S2, respectively. RANi= ith random number gener-
ated for particle i such that RANi�100� P1 and RANi�100
� P2. Sieves S1 and S2 are determined by comparing RANi with
the results of the sieve analysis. The radius of the generated
spheres �ri� is related to the random number generator and may,
therefore, differ from the target grain-size distribution, depending
on the random number generator.

Adjusting the Initial Packing to Obtain a Target
Porosity

The initial packing generated using the above procedure is con-
sidered to produce a loose structure. Thus, it is usually compacted
to reach a realistic porosity. This is not generally feasible to
achieve if only a static pressure �iso� is applied over the particles.
Therefore, a technique that involves applying a combination of
shaking and vertical compression is adopted in this study as de-
scribed below.

For each time step, all the walls are assigned a movement in

bx

by
bz

xO

z

a) Pressure applied b) Box moved, pressure reapplied

y

Sphere generation
space

Fig. 1. Shaking procedures
the x-, y-, and z-directions. The magnitudes of the movements are
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calculated by multiplying the given velocity and the time step.
The additional movement of the top wall is calculated based on
the applied force acting in the normal �y� direction

dwall = �F − Fcwall�/kwall �10�

where dwall=additional wall movement; F=force applied to the
wall; Fcwall and kwall=sum of forces and normal stiffnesses over
the wall contacts, respectively.

The porosity of the packing is monitored by calculating the
average packing height and the process is terminated when the
required height �by� is obtained. Since the packing height is mea-
sured during the shaking process, the walls stop temporality for a
period of time so that the particles can settle down. At the same
time the external force at the top wall is released. The walls are
then allowed to move with the same velocities but in the opposite
directions together with the activation of the external force on the
top wall �Fig. 1�b��. After the required height is reached, the DEM
simulation continued until the stability condition is satisfied.

Phase 2: Final Packing

To overcome the large amount of computations associated with
the dynamic packing method, a geometric method called the flip
technique is proposed. The algorithm is three dimensions in na-
ture; however, for the sake of simplicity, it is presented here in
two dimensions.

To generate a final packing with dimensions of px and py in the
x- and y-directions, respectively, the packing space is divided into
nx�ny domains �Fig. 2�a��. An initial packing S0 �bx�by� is first
generated using the technique described in “Adjusting the Initial
Packing to Obtain a Target Porosity” section and then cloned
repeatedly to obtain a final packing with similar properties �grain-
size distribution, porosity, mean coordination number, and fabric
tensors�. As the structure of the packing is mainly supported by
the force chains, it is necessary to maintain the force chains in
each initial packing after the assembly. This is achieved by flip-
ping the initial packing such that all particles �initially in contact
with the walls� become in contact with other particles in the final
packing. As shown in Fig. 3, sample Sx is obtained by flipping S0

around the x axis. Similarly, Sy is obtained by flipping S0 around
the y axis. Finally, Sxy is obtained by flipping Sx around the y axis
�or flipping Sy around the x axis�.

Samples S0, Sx, Sy, and Sxy are then placed into the space of the
final packing as follows:
• The initial packing is placed into the lower left corner of the

a)
b)

S0 Sy S0 Sy S0 Sy

S0
c)

Sy S0 Sy S0 Sy

Sx

d)

S0 Sy S0 Sy S0 Sy

Sx Sxy Sx Sxy Sx Sxy

e)

S0 Sy S0 Sy S0 Sy

Sx Sxy Sx Sxy Sx Sxy

S0 Sy S0 Sy S0 Sy

by

byp y
=
n y
xb
y

bxbx bx bx bx bx

by

px= nxxbx

Fig. 2. Placing samples into the final domain
domain. Sample Sy is then placed to the right of sample S0 and
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the process is repeated until the bottom row is completed �Fig.
2�b��.

• The sample to be placed on top of sample S0 should have
particles 3, 4, 5, and 6 placed in the same order as the sample
S0. Consequently, sample Sx is chosen �Fig. 2�c��.

• Similarly, sample Sxy is chosen to be placed next to sample Sx.
Note that particles at the bottom of sample Sxy �particles 6, 5,
4, and 3� are also in contact with identical particles at the top
of sample Sy. The procedure is repeated until the second row is
completed �Fig. 2�d��. The assembly of the samples in the final
packing is shown in Fig. 2�e�.
After filling up the final domain, the simulation continued until

the final packing satisfies the stability condition. It should be
noted that the normal forces acting on particles next to the wall
remain the same after the small sample is flipped. For the sake of
simplicity, the discussions will be focused on the interaction of
spherical particles in this study. The extension to other particle
shapes can be carried following the same procedure. Considering
the interaction between two spheres as shown in Fig. 4�a�, the
normal penetration in Eq. �1� can be calculated as

�n = 0.5�R1 + R2 − O1O2� �11�

where �n=normal penetration; R1 and R2=radii of spheres 1 and
2, respectively; and O1O2=distance between the centers of the
two spheres.

The normal penetration depth of the interaction between a
sphere and a wall �Fig. 4�b�� is calculated as

�n = R1 − O1W �12�

where W=projection of the sphere center to the wall. As the
sphere is generated using the flip technique �Fig. 4�c��, the dis-
tance between the centers of the two spheres is equal to 2O1W.
Substituting into Eq. �11�, we obtain

a) Initial packing b) Sx

y

xO

A B

C A

O C

B C

B A

O

O

A
c) Sy d) Sxy

B

C
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2
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2

3 4 5 6

8910

Fig. 3. Flipping scheme of the initial packing

2δn

Sphere 1 Sphere 2

R2
R1
O1 O2

Sphere 1

R1
O1

δn

Wall

a) Interaction between two
spheres (general)

b) Interaction between a
sphere and a wall

c) Interaction between a sphere and
sphere generated by flip technique
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δn
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wall position

δn

W W O′1

Fig. 4. Schematic of sphere interactions
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�n = 0.5�R1 + R1 − O1O1�� = 0.5�2R1 − 2O1W� = R1 − O1W

�13�

By comparing Eqs. �12� and �13�, it can be concluded that the
penetration depth used in Eq. �1� is identical for the interactions
between a sphere and a wall �before flipping� and between two
spheres �after flipping�. This leads to the conservation of forces
acting on the spheres at the boundaries and, therefore, the struc-
ture of the initial packing is preserved in final packing.

Numerical Simulation

Packing Generation

To validate the proposed algorithm, simulations were carried out
to fill up a final packing �2 m�2 m�2 m� as shown in Fig.
5�a�. The material properties used in the simulation are given in
Table 1. The target grain-size distribution is given in Table 2. The
target porosity is chosen to be 0.38 which is typical for sands. The
final packing is generated from the cubical shaped initial packings
�S0� with the dimensions of 0.5-m height, 0.5-m width, and 0.5-m
depth as illustrated in Fig. 5�b�.

2m
2m

2m

a) Final packing

0.5m
0.5m

0.5m

b) Initial packing

Sphere generation
space

xO

y
z

Fig. 5. Sketch of the packing dimensions

Table 1. Material Properties

Parameter Value

Particle density �kg /m3� 2600

Young’s modulus �Pa� 15�106

Poisson’s ratio 0.5

Friction �deg� 18

The Box-Poisson ratio 0.2

Box’s friction �deg� 0

Force damping coefficient 0.2

Moment damping coefficient 0.2

Table 2. Grain-Size Distribution

Sieve
diameter
�mm�

Input grain-size
distribution

Result grain-size
distribution

% passing
�weight�

% passing
�number�

% passing
�number�

% passing
�weight�

10 0 0 0 0

20 2 31.47 34.47 2.72

50 50 90.93 94.40 62.77

80 95 99.64 99.8 94.46

100 100 100 100 100
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Triaxial Tests

To calibrate the behavior of the initial �S0� and final packings,
triaxial tests are carried out using the obtained packing structures.
In these simulations, boundaries are moved at a strain rate of
0.01. This value is chosen so that the unbalanced force is signifi-
cantly small compared to the contact force; i.e., the system is
always close to equilibrium. The sample is first compressed iso-
tropically using an all around confining pressure. Two different
values of confining stresses are adopted, namely, 50 and 100 kPa,
in the analysis. After the stability condition is reached, additional
0.01 strain rate is applied to the top wall while the lateral confin-
ing pressure is kept constant. The reaction stresses are then cal-
culated from the contact forces acting on the walls. During the
simulation, gravity field is set to zero. The configuration of the
specimen used in the triaxial test is shown in Fig. 6.

Results and Discussion

The general characteristics of the generated packing are summa-
rized in Table 3. Phase 0 represents the packing obtained after the
pouring procedure only. It can be seen that the required properties
have been generally satisfied in the final packing. The obtained
packing porosity has a value of 0.377, while the target porosity is
0.38. The grain-size distribution obtained �Table 2� is slightly
different from the input one as predicted when a random number

0.005 strain rate

0.005 strain rate

σ3σ3

Fig. 6. Snapshot of the triaxial test simulation �3,629 particles�

Table 3. General Characteristics of the Packing

Packing properties Phase 0 Phase 1 Phase 2

Height �m� 0.539 0.499 1.99

Total number of
particles

3,629 3,629 232,256

Porosity 0.43 0.379 0.377

Mean coordination
number

6.47 5.52 5.514

Simulation time �s� 4,544 6,709 356,173

Fabric tensor
components

xx 0.339 0.339 0.3385

yy 0.32 0.321 0.322

zz 0.34 0.339 0.3385

xy −1�10−5 0.002 1.18�10−5

xz −5.33�10−5 �0.001 −1.66�10−5

yz −5�10−4 �0.002 1.15�10−5
Note: Phase 0 means the packing obtained from the sedimentation.

INTERNATIONAL

Downloaded 15 Mar 2010 to 132.206.38.53. Redistribution subject to
generator is used. It is, however, desired to demonstrate the ran-
domness of the packing algorithm. The simulation time for the
initial sample packing was about 1 h and 45 min, whereas the
total time for the final packing �which depends on the packing
size� was approximately 90 h; most of it has been mostly used to
satisfy the stability condition. It should be noted that generating a
packing of similar dimensions to the final packing shown in Fig.
5�a� without using the proposed flip technique would take up to
1560 h �using the same computer� to obtain the required proper-
ties �e.g., grain-size distribution and porosity�.

Coordination Number

As shown in Table 3, the mean coordination numbers for phase 0
�after the completion of the particle pouring step� have a value of
6.47. This value is generally in good agreement with the results of
Pinson et al. �1998� who investigated the packing properties pre-
pared using the pouring technique. They concluded that the mean
coordination number oscillates around a constant value of 6.29 in
average, independent of the particle size distribution.

An interesting observation has been made in the above simu-
lations related to the changes in the mean coordination number
with the change in the packing density. When the packing is
modified to obtain the required porosity, the resulted packing no
longer has the same structure as the one obtained using the con-
ventional pouring technique. A decrease in the mean coordination
number, from 6.47 in phase 0 to 5.52 in phase 1, was observed as
shown in Table 3. This decrease in the mean coordination number
was not expected since a denser packing usually has a higher
mean coordination number. However, since the packing in phase
1 is generated using a different method, the above values are
considered to be irrelevant. It should also be noted that, based on
the analysis results, a value of 4 for the mean coordination num-
ber was sufficient for the packing to be stable.

Fabric Tensor „Fij…

In soil mechanics, the term fabric is used to refer to the arrange-
ment of particles, particle groups, and pore spaces. Quantitative
measures of fabric are usually considered to investigate the char-
acteristics of a given soil system �e.g., degree of homogeneity and
isotropy�. In DEM simulations fabric can be quantified using the
fabric tensor �Luding 2004�. The contact fabric tensor �second
rank� can be expressed as

Fij =
1

Nc
�
Nc

ninj �14�

where Nc=number of contacts and ni and nj =contact normals in
the i- and j-directions, respectively.

Table 3 shows the fabric tensor components for the packing in
phase 0, phase 1, and phase 2. The fabric tensor components in
the x- and z- �horizontal� directions are about the same, whereas
the component in the y- �vertical� direction is slightly smaller due
to the presence of gravity. By comparing the fabric tensor com-
ponents in the three different phases, it can be seen that the mag-
nitude of the fabric tensor remains almost unchanged. Since the
fabric tensor is strongly related to the stiffness and volumetric
behavior of the assemblies �Luding 2004�, the stress-strain behav-
ior is expected to also remain unchanged from the initial sample
to the final packing. The stress-strain behavior will be further

discussed in “Stress Strain Behavior” section.
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Stress Strain Behavior

Fig. 7 illustrates the stress-strain behavior of the sample and final
packing under confining stresses of 50 and 100 kPa, respectively.
The initial stiffness generally increased with increasing the con-
fining stress. The peak strengths are observed to be identical for
both the sample and final packing regardless of the applied con-
fining stresses. The stress-strain behavior shows also a postpeak
softening behavior for all examined structures such that axial and
radial strains increased with the decrease of the axial stress. In
general, the stress-strain behavior of the two packing systems is
almost identical for the examined range of confining stresses. This
is attributed to the insignificant changes to the sample packing as
compared to the final packing structures �coordination numbers,
porosities, and fabric tensors�.

Stress Distribution

To investigate the stress distribution in the final packing, the mac-
roscopic stress tensor can be determined using �Matuttis et al.
2000�

ij =
1

V �
p�V

�
c=1

c

li
cf i

c �15�

where V=representative “averaging” volume; f i
c=force acting at

contact; li
c=branch vector from the particle center to the contact

point c; and indices i and j indicate the Cartesian coordinates.
To examine the geostatic stress distribution inside the final

packing, stresses are averaged over representing volumes. The
calculated stresses Sxx, Syy, and Szz in the x-, y-, and z-directions
are shown in Fig. 8. The stress distribution generally satisfied the
expected geostatic stress distribution except at as some local areas
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Fig. 7. Triaxial test results
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around the corners of the initial samples. This is attributed to the
remaining wall effect in the samples before the assembly process.

To quantify the stress distribution and compare it to the theo-
retical values, the stresses are averaged along a plane normal to
the y axis and the results are presented in Fig. 8 along with the
expected theoretical values for comparison purpose. The theoret-
ical lateral pressure is determined by multiplying the vertical
stress by the lateral earth pressure coefficient at rest �K0� often
used in conventional soil mechanics and described by

K0 = 1 − sin �� �16�

where ��=effective friction angle.
By fitting the simulation data of the sample packings with

Mohr-Coulomb failure criterion, a friction angle of 23.7° is ob-
tained and used in Eq. �16� to determine the K0 value. It can bee
seen that both the vertical and lateral stresses obtained based on
the proposed algorithm are in good agreement with the theoretical
values as illustrated in Fig. 8.

Summary and Conclusions

An algorithm to generate particle packing with predefined grain-
size distribution and porosity was proposed. Numerical simu-
lations were carried out to evaluate the performance of the
proposed algorithm. Packing is generated by assembling small
size samples, which have been subjected to a densification pro-
cess, using the proposed flip technique. This procedure has
proven to be successful in maintaining the structure of the gener-
ated samples in the final packing and produced realistic properties
and stress distribution within the final packing. The sample pack-
ing can generally be adjusted to have a specific structure and then
a simulation can be carried out on the assembled large-scale final
packing. It should be noted that even though the developed algo-
rithm has resulted in significant decrease in computation time, it
is only applicable to generate boxlike shaped packing systems.
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Notation

The following symbols are used in this paper:
bx, by, and bz

� packing dimensions;
Dinit

a,b � initial distance between the two interacting
elements a and b;

D1 and D2 � diameters of sieves;
dwall � additional movement;

F � force applied to the wall;
Fcwall and kwall

� sum of forces and normal stiffnesses;
f i � resultant force;
f i

c � force acting at contact;
fnci � normal force at contact c of particle i;

kn � normal stiffness;
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ks � tangential stiffness;
li
c � branch vector from the particle center to the

contact point c;
Nc � number of contacts;
n � branch vector from the contact point to the

particle center;
ni and nj � contact normals in the i- and j-directions;

P1 and P2 � total number of grains;
RANi � ith random number;

Sc � stability value;
Sinit � interaction surface;

V � representative averaging volume;
Vs � volume of particles;

�, �, and � � fitted values;
�fsci � incremental shear force;
�ut � incremental tangential displacement;

�n � relative normal displacement; and
�i � internal friction coefficient.
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